Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Beyond two-point correlations: from higher-order data statistics to neural representations

Project description

New theory describes deep neural network learning from high-order correlations

Like humans, deep neural networks (DNNs) can learn from complex and detailed interrelationships among multiple data points (so-called high-order correlations or HOCs) extracting data-specific features. However, existing theoretical frameworks do not capture this ability. The ERC-funded beyond2 project aims to develop a theory that explains how and what DNNs learn from HOCs. To overcome the unrealistic assumption of Gaussian inputs in current theories, the project will extend methods from statistical physics and high-dimensional statistics to manage non-Gaussian input distributions. The team will train DNNs by stochastic gradient descent to reveal how they learn from HOCs efficiently and investigate the relationship of so-called principal components of HOCs to fundamental data properties.

Objective

Deep neural networks (DNNs) have revolutionised how we learn from data. Rather than requiring careful engineering and domain knowledge to extract features from raw data, DNNs learn the relevant features for a task automatically from data. In particular, high-order correlations (HOCs) of the data are crucial for both the performance of DNNs and the type of features they learn. However, existing theoretical frameworks cannot capture the impact of HOCs – they either study “lazy” regimes where DNNs do not learn data-specific features, or they rely on the unrealistic assumption of Gaussian inputs devoid of non-trivial HOCs.

beyond2 will develop a theory for how and what neural networks learn from the high-order correlations of their data. We break the problem into two parts:
(i) *How?* We analyse the learning dynamics of neural networks trained by stochastic gradient descent to unveil the mechanism by which they learn from HOCs efficiently (in terms of the minimum amount of training data / learning time required to attain satisfactory predictive performance).
(ii) *What?* Our preliminary research suggests that neural filters are primarily determined by the “principal components” of HOCs. We investigate how these principal components relate to fundamental data properties, such as symmetries of the inputs.

We attack these problems by extending methods from statistical physics and high-dimensional statistics to handle non-Gaussian input distributions. Studying the interplay between data structure and learning dynamics will allow understanding how specific learning mechanisms, like attention or recursion, are able to unwrap HOCs.

By shifting the focus from unstructured to non-Gaussian data models, beyond2 will yield new insights into the inner workings of neural networks. These insights will bring theory closer to practice and might facilitate the safe deployment of neural networks in high-stakes applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 999,00
Address
VIA BONOMEA 265
34136 Trieste
Italy

See on map

Region
Nord-Est Friuli-Venezia Giulia Trieste
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 999,00

Beneficiaries (1)

My booklet 0 0