Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Recycling versus loss in the marine nitrogen cycle: controls, feedbacks, and the impact of expanding low oxygen regions

Project description

Microbial controls on nitrogen loss and recycling in the ocean

Microbial conversions of bioavailable nitrogen to dinitrogen in oxygen-depleted waters account for approximately one third of marine nitrogen loss, despite these zones comprising only 0.1 % of ocean volume. These zones are expanding, likely increasing nitrogen loss, which would negatively affect ecosystems and carbon sequestration. However, gaps in our understanding of the underlying microbial dynamics preclude robust predictions of the future marine nitrogen cycle and its influence on primary production. The ERC-funded RECLESS project will close this gap combining innovative approaches including ecophysiological in situ experiments, fine-scale hydrographic observations and a mechanistic global microbial ecosystem model. By linking cellular-level microbial processes in oxygen-depleted systems to global cycles, the project sets new standards for global biogeochemical analyses.

Objective

RECLESS will predict how ongoing ocean deoxygenation impacts microbial nitrogen transformations and thereby the future availability of nitrogen to support oceanic primary production and carbon sequestration. Microbial conversions of bioavailable nitrogen to dinitrogen in oxygen-depleted waters currently account for ~30% of the marine nitrogen loss, despite oxygen-depleted waters making up just 0.1% of the ocean volume. Models predict accelerating expansion of oxygen depletion, which entails increased nitrogen loss with negative impacts on ecosystem function and oceanic carbon sequestration, as well as an associated production of greenhouse-forcing nitrous oxide. However, biogeochemical ocean models currently fail to reproduce fundamental aspects of the microbial nitrogen transformations observed experimentally, including how nitrogen is either recycled or lost in oxygen-depleted waters. This reflects fundamental knowledge gaps concerning the environmental controls on growth, mortality, and activity of microbial populations, which preclude robust model predictions. RECLESS breaks new ground by synergistically integrating innovative oceanographic, biogeochemical, ecophysiological, and model-based investigations to close these gaps. With unprecedented in situ ecophysiological experiments using novel custom-made instrumentation as a cornerstone, RECLESS will identify key organisms, quantify their response to environmental controls, and construct the first comprehensive global microbial ecosystem model for oxygen-depleted marine systems. This model will enable robust predictions of how ocean deoxygenation affects nitrogen cycling and loss, greenhouse gas production, and interactions with the carbon cycle. Thus, RECLESS will transform our understanding of the present and future marine nitrogen cycle and its climate interactions, and set new standards for the integration of microbial processes in global biogeochemical analyses.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-SyG

See all projects funded under this call

Host institution

GOETEBORGS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 3 208 182,00
Address
VASAPARKEN
405 30 Goeteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 208 182,00

Beneficiaries (4)

My booklet 0 0