Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments

Project description

Membrane-condensate interactions and dynamics in synthetic cells

Synthetic cells are artificially designed and constructed to mimic and understand the structure and function of biological cells. Multiple approaches are used to recreate cellular characteristics including compartmentalisation, metabolism, and responsiveness to stimuli. Synthetic cells hold great promise as tools for further insight in fundamental biological processes. With the support of the Marie Sktodowska-Curie Actions programme, the ComelnCell project will employ synthetic vesicles to study how membranes interact with biomolecular condensates: membrane-less organelles formed through liquid-liquid phase separation. Researchers will explore the role of these interactions in key cellular processes such as transport, metabolic networks, and repair.

Objective

ComeInCell will establish a novel integrated Synthetic Cell platform to provide cost- and resource-efficient, environmentally friendly, widely applicable and quantitative model systems to elucidate key cellular mechanisms of health and disease based on the integration of condensate and membrane models. Understanding membrane-condensate interactions is vital for deciphering their functional roles in cellular processes. Our consortium employs synthetic vesicles as model systems to explore these interactions. These tailor-made mimics of cellular compartments offer a platform for studying membrane dynamics and the impact of compartmentalization on the activity of reaction networks and the assembly of complex machinery. We will design synthetic cells as life-science prototyping tools to decipher the role of membrane-associated condensates in essential cellular processes linked to membrane transport, membrane transformation, metabolic networks, and repair. The network will confront global challenges, providing solutions in drug development, therapeutics, green-related issues, and synthetic biology. Our goal is to equip junior scientists with cross-disciplinary expertise for developing integrated synthetic cellular testbeds encompassing condensates and membranes, revolutionizing prototyping systems. We will train the next generation of biophysicists, biochemists and bioengineers in rigorous quantitative and mechanistic thinking, while establishing strong ties to young and emerging European SMEs in the health sector for efficient dissemination towards new therapies

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-DN-01

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 781 617,60
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

Partners (19)

My booklet 0 0