Project description
Light signals for cellular communication
Cells communicate using complex chemical signals, but engineering these interactions is a major challenge, especially for synthetic cells, which lack the intricate systems of living ones. In this context, the ERC-funded Lighthouse project offers a breakthrough: a light-based communication system that enables instant, highly specific signalling between cells. Unlike chemical signals, light can pass through transparent barriers and does not require membrane transporters. The project will first establish this system in synthetic cells, then transfer it to bacterial and mammalian cells. Ultimately, Lighthouse aims to create multicellular communities where cells collaborate, compete, or defend using light signals. This innovation could revolutionise cellular bioengineering, paving the way for new biomedical and biotechnological applications.
Objective
Engineering cell-to-cell communication is fundamental –yet highly challenging– for programming multicellular systems and interfacing living and biomimetic synthetic cells. The problem lies in developing specific communication that is independent of existing chemical signaling and in connecting it to cell behavior. Both the high complexity of intercellular signaling in living cells and the fairly limited capabilities of synthetic cells severely restrict possibilities to engineer communication in and between these two realms. Here, I propose a new nonchemical mode of cell-to-cell communication that operates with light as a signal. I aim to develop sender cells that produce visible light as a signal that corresponding receiver cells respond to. In this light-based communication, the signal will propagate at the speed of light independent of diffusion, will cross optically transparent barriers without the need for membrane transporters, and will allow communication even between physically separated cells. Also, the light signal will be orthogonal of native chemical signals, resulting in high specificity and no cross talk. First, I will establish light-based communication in molecularly defined synthetic cells to decipher the central rules of this new mode of communication. Detailed characterization (light generation, response, distance, dynamics, orthogonality) of light-based communication will provide the framework for later programming of multicellular behavior. Second, I will transplant light-based communication into bacterial and mammalian cells, showing for the first time that communication with light is possible at the cellular level. Last, I will engineer diverse communities of living and synthetic cells with light-based communication showing various behavior, including collaboration, predation, and defense. Ultimately, this will pave the way for an independent, highly modular, nonchemical mode of communication for cellular bionics and cellular bioengineering.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
- synthetic cell
- artificial cell
- bottom-up synthetic biology
- optogenetics
- photoswitchable proteins
- reversible
- intercellular communication
- light
- cell signaling
- multicellular communities
- biomimetic systems
- quorum sensing
- orthogonal communication
- biohybrids
- cellular bionics
- bioluminescence
- giant unilamellar vesicles
- luciferase
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
48149 Muenster
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.