Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

A Foundation Model for Next-Generation Generalizable AI in Neuro-Radiology

Description du projet

Une IA plus intelligente pour l’imagerie cérébrale

La radiologie devrait bénéficier de l’IA, mais les progrès ont été ralentis par la nécessité de disposer de vastes ensembles de données étiquetées. Qui plus est, l’adaptabilité des outils d’IA conventionnels est limitée. La plupart des modèles peinent à se généraliser sur l’ensemble des tâches ou des populations de patients, ce qui freine leur adoption par les cliniciens. Dans ce contexte, le projet financé par le CER va développer un modèle de fondation visuelle formé sur plus de 200 000 scans cérébraux à l’aide de l’apprentissage auto-supervisé. Axé sur la neuro-radiologie, ce modèle soutiendra un large éventail d’applications, du triage d’urgence à la prévision du risque de démence, en utilisant un minimum de données étiquetées. Grâce à des outils open-source et à une formation à grande échelle, le projet ouvre la voie à une IA plus souple, plus précise et plus accessible dans le domaine de l’imagerie médicale.

Objectif

Medical artificial intelligence (AI) holds immense promise for transforming radiology by introducing advanced diagnostic capabilities. Yet, traditional AI models face challenges like extensive data annotation needs and are task-specific with limited generalizability to different scenarios. This problem of robust and label-efficient generalization continues to be a key translational challenge for medical AI models and has prevented their broad uptake in real world healthcare settings. AI-Next will build on the recent advent of foundation models, providing a unique opportunity to rethink the development of medical AI and overcome the challenges of traditional AI models. At the core of AI-Next stands the development of a state-of-the-art visual foundation model (VFM) that learns generalizable representations from unlabelled radiology scans and provides a basis for label-efficient model adaptation in several applications. The VFM will focus on neuro-radiology and be trained with data at unprecedented scale including >200,000 brain computed tomography and magnetic resonance imaging scans from population-based and disease specific cohorts, leveraging self-supervised learning. The VFM will be adapted with a limited set of explicit labels to a range of tasks with clinical significance. This includes the screening and triage of scans for emergency findings, longitudinal disease activity assessment, risk prediction of dementia, forecasting of disease evolution and finally automated radiology reporting. Moreover, the VFM will be employed for image processing tasks, including generating super-resolution images to enhance diagnostic capabilities. Overall, AI-Next will represent a crucial step towards more generalisable, accurate and label-efficient AI in neuro-radiology, offering significant potential for improving diagnostics, clinical decision-making as well as patient outcomes, and its open-source innovations will serve as a blueprint for the broader field of radiology.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITATSKLINIKUM BONN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 268 799,59
Adresse
VENUSBERG-CAMPUS 1
53127 BONN
Allemagne

Voir sur la carte

Région
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 268 799,59

Bénéficiaires (2)

Mon livret 0 0