Project description
Hybrid textile technology for wearable electronics
The expanding wearable electronics sector faces a challenge with the discontinuous and limited power supply of its components, driving the need for self-powered systems. Low-grade heat and moisture represent promising clean energy sources. Dual-function technologies that combine thermal or moisture-induced energy harvesting (EH) with electrochemical energy storage (ES) show significant potential. However, these technologies often suffer from inconsistent and unstable performance. The ERC-funded SelfEnergyDriver project aims to develop a pioneering hybrid textile technology. This technology integrates moisture-triggered EH, thermal EH, and supercapacitive ES, offering a solution to simultaneously harvest and store energy from two sources using non-toxic and safe materials. Ultimately, the project seeks to incorporate this innovative technology into specially designed textiles.
Objective
                                In the landscape of wearable electronics, there is a demand for self-powered systems to address the challenges posed by discontinuous and limited power supply. Low-grade heat and moisture are two ubiquitous clean energy sources with great potential for electrical energy production. 2-in-1 technologies combining thermal or moisture-induced energy harvesting (EH) with electrochemical energy storage (ES) are attractive self-charging solutions for wearables. However, their performance remains inconsistent and unsteady. The understanding of the underlying EH and ES mechanisms remains fragmented, without considering synergistic opportunities.
SelfEnergyDriver proposes a PIONEER HYBRID textile technology UNIFYING moisture-triggered EH, thermal EH and supercapacitive ES. This groundbreaking 3-in-1 concept aims for the self-sustained harvesting of two clean energy sources and simultaneous in situ storage of the captured energy. Non-toxic multifunctional hybrid electrode nanomaterials with 3D porous architecture, redox-active nature and precisely engineered moisture permeability, thermal and electrochemical properties will be developed to comply with all EH/ES requirements. These hybrids will be incorporated in textiles and assembled with advanced redox-active ionic hydrogel polyelectrolytes in innovative device architectures.
SelfEnergyDriver will delve into the intricacies of electrodes, electrolytes, and their interfaces, to guide the rational design of these trailblazing technologies and foster cooperative effects for synergistically-enhanced outputs. The supreme goal will be bridging the knowledge gap between electrode/electrolyte properties, interface phenomena, device architecture and performance. As a proof-of-concept, the 3-in-1 technologies will be tested under simulated real-world conditions, to showcase their potential to revolutionize the landscape of wearable energy systems. The acquired knowledge will set new landmarks in clean energy, textronics and sensing.
                            
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                                
                                                
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
This project's classification has been validated by the project's team.
                                                
                                            
                                        
                                                                                                
                            CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology environmental engineering energy and fuels renewable energy hybrid energy
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures
- engineering and technology materials engineering textiles
- engineering and technology materials engineering coating and films
                                Keywords
                                
                                    
                                    
                                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
                                        
                                    
                                
                            
                            
                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
            Programme(s)
            
              
              
                Multi-annual funding programmes that define the EU’s priorities for research and innovation.
                
              
            
          
                      Multi-annual funding programmes that define the EU’s priorities for research and innovation.
- 
                  HORIZON.1.1 - European Research Council (ERC)
                                      MAIN PROGRAMME
                                    
 See all projects funded under this programme
            Topic(s)
            
              
              
                Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
                
              
            
          
                      
                  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
            Funding Scheme
            
              
              
                Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
                
              
            
          
                      Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
              Call for proposal
                
                  
                  
                    Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
                    
                  
                
            
                          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4050-453 PORTO
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        