Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Lattice Boltzmann For Advanced SimulaTions

Project description

HPC and the lightweight lattice Boltzmann scheme elucidate soft glasses’ dynamics

Characterising the complex dynamics of soft glass materials including fluid interfaces, disordered liquid-liquid emulsions and soft microfluidic droplet crystals is quite challenging. It is essential to many fields including materials engineering, food processing, tissue engineering and photonics. However, current models fail to accurately capture the intricate non-equilibrium thermodynamics. The ERC-funded LBFAST project will focus on optimising an efficient simulator of complex flows for implementation in high-performance computing clusters. Using LBcuda – an open-source software optimised for graphics processing units – to implement the so-called lightweight lattice Boltzmann scheme, the team expects to achieve a significant increase in processing capacity while slashing computational weight and energy use.

Objective

The intricate dynamics of fluid interfaces, disordered liquid-liquid emulsions, and soft microfluidic droplet crystals, collectively known
as soft glass materials (SGM), pose challenges to non-equilibrium thermodynamics and hold profound implications for engineering
applications such as combustion, materials design, and food processing. Advances in SGM modeling within the ERC COPMAT project
offer opportunities for innovative mesoscale materials in fields like tissue engineering, photonics, and catalysis.

The Lightweight Lattice Boltzmann (LB) scheme, which relies on hydrodynamic moments, models SGM by preventing droplet
coalescence including near-contact interactions (NCI) due to surfactants. Integrated into LBcuda, an open-source software optimized
for GPUs, it efficiently simulates complex flows while saving electrical energy, in line with the goals of the European Green Deal.

The LBFAST project aims to optimize LBcuda's implementation for HPC clusters powered by GPUs, achieving processing rates of
several hundred GLUPS while using only 50% of computational resources, resulting in a 75% reduction in energy costs compared to
standard LB methods. This enhancement enables accelerated production rates for industrial applications and aligns with the criteria
of the EuroHPC Joint Undertaking, benefiting users addressing energy and environmental challenges in the next exascale computing
generation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-POC

See all projects funded under this call

Host institution

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
VIA MOREGO 30
16163 GENOVA
Italy

See on map

Region
Nord-Ovest Liguria Genova
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0