Project description
Innovative tool support for safety and security co-analysis
Adequate tool support for analysing safety and security risks together is essential for the reliable operation of technology. A framework for joint safety and security analysis features a graphical risk model and efficient algorithms for calculating risk metrics. Building on this, the ERC-funded RUBICON project will create a proof-of-concept software tool incorporating methods that advance its technology readiness. The project will scale up the analysis methods to address industry-sized challenges, enhance the interpretability of results, and, by using and advancing Pareto analysis, develop multi-objective optimisation techniques. Additionally, it will focus on balancing conflicting requirements and commercialising the proof-of-concept tool after the project’s completion.
Objective
Effective tool support for the joint analysis of safety and security risks is long overdue.
Risk management is an important activity to ensure the reliable functioning of technology, such as power plants and self-driving cars. Risks include both safety (= accidental failures) and security aspects (= malicious attacks). Historically, safety and security risks have been analyzed in isolation, despite often conflicting with each other. Effective decision-making requires considering safety and security risks in combination, as measures that increase safety may decrease security and vice versa.
My Consolidator Grant CAESAR has laid out the groundwork for a safety-security co-analysis framework: (1) A graphical risk model, mapping how vulnerabilities and failures propagate and cause system-level disruptions; (2) efficient algorithms to compute risk metrics, indicating how well a system performs in terms of safety-security. (3) algorithms that quantify the uncertainty of the analysis algorithms.
In RUBICON, I will develop a PoC software tool that supports methods from CAESAR, advancing from TRL1 to TRL3. Key challenges to be tackled include:
Scaling up analysis methods to handle industry-size problems, by tailoring algorithms to work with specific subclasses that appear in practice.
Improve the interpretability of calculated outcomes. We will develop diagnostic feedback methods based on counter example analysis and importance factors.
Multi-objective optimization techniques. When dealing with multiple, interdependent parameters, conflicting requirements often arise, due to resource constraints and varying priorities. RUBICON will develop optimal strategies to effectively balance such conflicts, exploiting and advancing Pareto-analysis.
The proof-of-concept tool will be tested and validated via lab and pilot studies across different industrial domains. A serious market analysis will lay out an actionable strategy to commercialize the PoC tool post-project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7522 NB Enschede
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.