Project description
Advancing neuromorphic computing with tellurene
Neuromorphic computing is essential for overcoming the limitations of traditional computing architectures, particularly in big-data applications. By mimicking the brain's neural networks, neuromorphic computing offers a more energy-efficient and scalable approach to processing information, addressing critical challenges in power consumption and computational efficiency. To emulate synaptic behaviour, the ERC-funded TNext project proposes to develop memristors from tellurene. Compared to other materials, this offers key advantages like structural simplicity and adaptability to various surfaces. The goals of the study involve the scalable production of tellurene and its integration into neuromorphic circuits for edge-computing applications including AI.
Objective
Big-data management is currently placing a high demand on both the hardware performance level, e.g. access latency, storage capacity, cost performance, and on the cognitive level, e.g. data processing, architectures, and algorithms. The ever-growing pressure for big data creates urgent global challenges like energy consumption and memory efficiency. New device architectures beyond the von Neumann paradigm are demanded which are inspired by the biological synaptic operativity towards the so-called neuromorphic computational scheme. The memristor is the more viable device emulating the synaptic behavior. Advanced materials are required to make memristor-based circuits energetically sustainable and outperforming. The integration of 2D semiconductors in memristors is a promising path to tackle these global challenges within the neuromorphic computation. In this scenario, here we propose a single-element memristor cell design based on tellurene (2D tellurium) mimicking artificial synaptic behavior and thus enabling memristor applications. Tellurene offers solid advantages over other 2D players owing to the structural and chemical simplicity, the low thermal budget of its synthesis, and the versatility to adapt to rigid and flexible layouts. Our goals are the scalable production of a tellurene standard and its integration in single memristor cells and in cross-bar arrays of memristors aiming at the fabrication of a neuromorphic circuits. The peculiar production process makes tellurene fit to delamination and transfer to any kind of surface, either rigid or flexible, flat or curve, and readily available for testing in edge-computing applications like environmental sensing signal elaboration. The translational purpose is to further up technology transfer of the developed products (either materials and processes) by retrieving stake-holders among small- and medium enterprises addressing the AI computing market.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.