Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticles

Description du projet

Des implants osseux autoalimentés

Les implants osseux jouent un rôle crucial dans l’industrie médicale, mais leur taux d’échec élevé augmente les coûts des soins de santé et diminue la qualité de vie des patients. L’un des principaux défis consiste à maintenir la viabilité des grands tissus vivants. De récentes recherches ont montré que le glycogène peut favoriser la survie à long terme des implants, promouvoir la formation des tissus, réduire l’inflammation et améliorer la vascularisation. Le projet NutriBone, financé par le CER, vise à remédier aux défauts osseux de taille critique en développant un implant osseux autoalimenté. Le projet se concentrera sur les défauts osseux importants et travaillera à la création d’un produit minimum viable, d’une feuille de route de certification, d’une étude de marché et d’un plan d’affaires. Le concept d’autoalimentation suggère que les tissus doivent générer leurs propres nutriments lorsque le milieu environnant ne peut les fournir.

Objectif

Keeping large (>1cm3) living tissues alive is an unresolved key challenge that hinders many clinical and industrial applications, including tissue/organ transplants, engineered tissues, drug screening models, and lab grown meat. While natural tissues within our body are continuously provided with nutrients via the blood stream, engineered, explanted, or even implanted tissues have to rely on the slow diffusion of nutrients until perfused vascularization is achieved. This commonly leads to tissue starvation, which inevitably causes tissue failure.

The NutriBone project is based on the logical yet never before explored premise that these tissues need to provide their own nutrients if the environment cannot do so. This is an innovative concept named self-feeding. We have surprisingly discovered that glycogen offers cell-driven long-term release of physiologically relevant quantities of glucose enabling long-term implant survival, accelerated tissue formation, reduced inflammation and immune responses, and improved vascularization. As this approach is a first-of-its-kind, we have patented it and here propose its valorisation.

We propose to develop a marketable self-feeding bone implant to address the current clinical challenge of critically sized bone defects. Although our technology is relevant for many clinical applications, we will focus on large bone defects. Bone is the second most implanted tissue but implant failure remains high, leading to high medical cost and low quality of life for patients. Moreover, bone implants represent the largest, and still fast growing market for engineered tissues, while awaiting a solution to maintain implant viability. Thus, we can foresee a concrete path-to-market. To this end, we will perform product development towards a minimum viable product, establishing a roadmap for certification, and market research as well business plan development to ensure a good product-market fit including a market entry and exit strategy.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Institution d’accueil

UNIVERSITEIT TWENTE
Contribution nette de l'UE
€ 150 000,00
Adresse
DRIENERLOLAAN 5
7522 NB Enschede
Pays-Bas

Voir sur la carte

Région
Oost-Nederland Overijssel Twente
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
Aucune donnée

Bénéficiaires (1)