Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Water-driven redox biocatalysis utilizing industrial waste heat as energy source

Objective

The chemical industry is embracing the need for sustainable and eco-friendly processes, with biocatalytic redox reactions emerging as promising candidates due to their ability to perform selective transformations under mild conditions. However, a major hurdle lies in the reliance on traditional stoichiometric electron donors, which pose environmental and economic constraints. Electrochemical approaches, while promising, are still nascent and require specialized infrastructure, limiting their widespread adoption. To overcome these limitations, this project proposes an innovative approach that harnesses water as an electron donor for biocatalytic redox reactions. This shift necessitates external energy input and suitable catalysts to convert the energy into the oxidation power needed to oxidize water. The project introduces a novel strategy of selectively immobilizing biocatalysts on the water oxidation catalyst surface. This approach facilitates efficient electron transfer, minimizes oxidative inactivation of the biocatalysts, and enables easy recycling of the composite catalyst material. The core innovation lies in the design and creation of fusion proteins that link the biocatalysts with anchor peptides using flexible or rigid linkers. This controlled immobilization strategy enhances energy coupling efficiency, mitigates ROS-induced enzyme inactivation, and paves the way for more efficient and sustainable oxyfunctionalization processes. This highly interdisciplinary project, spanning biocatalysis, chemistry, enzyme engineering, and material science, capitalizes on the fellow's proficiency in enzyme engineering and biocatalysis in combination with world-leading expertise of Prof. Frank Hollmann from TU Delft in green chemistry and biocatalytic oxyfunctionalizations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution
€ 232 916,16
Address
STEVINWEG 1
2628 CN Delft
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data