Objective
The chemical industry is embracing the need for sustainable and eco-friendly processes, with biocatalytic redox reactions emerging as promising candidates due to their ability to perform selective transformations under mild conditions. However, a major hurdle lies in the reliance on traditional stoichiometric electron donors, which pose environmental and economic constraints. Electrochemical approaches, while promising, are still nascent and require specialized infrastructure, limiting their widespread adoption. To overcome these limitations, this project proposes an innovative approach that harnesses water as an electron donor for biocatalytic redox reactions. This shift necessitates external energy input and suitable catalysts to convert the energy into the oxidation power needed to oxidize water. The project introduces a novel strategy of selectively immobilizing biocatalysts on the water oxidation catalyst surface. This approach facilitates efficient electron transfer, minimizes oxidative inactivation of the biocatalysts, and enables easy recycling of the composite catalyst material. The core innovation lies in the design and creation of fusion proteins that link the biocatalysts with anchor peptides using flexible or rigid linkers. This controlled immobilization strategy enhances energy coupling efficiency, mitigates ROS-induced enzyme inactivation, and paves the way for more efficient and sustainable oxyfunctionalization processes. This highly interdisciplinary project, spanning biocatalysis, chemistry, enzyme engineering, and material science, capitalizes on the fellow's proficiency in enzyme engineering and biocatalysis in combination with world-leading expertise of Prof. Frank Hollmann from TU Delft in green chemistry and biocatalytic oxyfunctionalizations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural scienceschemical sciencescatalysisbiocatalysis
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
2628 CN Delft
Netherlands