Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

A computational neuroscience encoding-decoding approach for explaining and comparing artificial and biological networks

Project description

Computational neuroscience to advance Explainable AI

Recent progress in AI has heavily relied on deep artificial neural networks (ANNs) and machine learning (ML). These technologies have widespread applications in transportation, energy distribution, and medical diagnosis. The field of explainable AI (XAI) has emerged to address the challenge of making AI decisions more transparent, but it has struggled, so far, to do so effectively. Supported by the Marie Skłodowska-Curie Actions programme, the Neurosci-ANN project will apply novel techniques from computational neuroscience (CNS) to advance XAI and uncover critical insights that could help researchers revolutionise AI and robotics.

Objective

Recent progress in artificial intelligence (AI) has been mostly due to machine learning and, in particular, deep artificial neural networks (ANNs). Deep learning has an increasing presence in everyday life, including critical applications such as medical diagnosis, transportation, and energy distribution. In response to this, the field of Explainable AI (XAI) has generated much effort in terms of techniques and algorithms to address this problem. However, there is still no consensus on a suite of technology to address these challenges, progress has been extremely limited, and the formal properties of such systems are under-studied.

On the other hand, computational neuroscience (CNS) aims to discover the principles behind biological neural networks that enable the brain to support cognition, perception, and action. This project will employ the latest approaches and techniques used in the field of CNS to develop the field of XAI. Specifically, the first major goal will be to employ the methods of representational geometry and neural encoding manifolds (both proven to be effective in revealing meaningful neural relationships in previous studies) to reveal how activations of collections of artificial neurons in hidden layers are associated with the decision-making process of deep networks.

Second, the same methodology will be used to reveal novel insights from a variety of existing large-scale biological datasets. Finally, we will compare and contrast the encoding strategies of neural populations found various deep learning architectures with those observed in biological networks. A better understanding of the inner-workings of biological models could directly inform researchers on how to build novel artificial models that are more accurate, robust, and even economical during both training and inference in terms of data, time, and energy consumption.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2024-PF-01

See all projects funded under this call

Coordinator

IE UNIVERSIDAD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 209 914,56
Address
CALLE CARDENAL ZUNIGA 12
40003 Segovia
Spain

See on map

Region
Centro (ES) Castilla y León Segovia
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0