Description du projet
Les neurosciences computationnelles au service de l’IA explicable
Les progrès récents dans le domaine de l’IA s’appuient fortement sur les réseaux de neurones artificiels profonds (ANN pour «artificial neural networks») et l’apprentissage automatique (ML pour «machine learning»). Ces technologies ont des applications étendues dans les transports, la distribution d’énergie et le diagnostic médical. Le domaine de l’IA explicable (XAI pour «explainable AI») est apparu pour relever le défi de rendre les décisions de l’IA plus transparentes, mais il a eu du mal, jusqu’à présent, à le faire de manière efficace. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet Neurosci-ANN appliquera de nouvelles techniques issues des neurosciences computationnelles (CNS pour « computational neuroscience») pour faire progresser la XAI et découvrir des informations essentielles qui pourraient aider les chercheurs à révolutionner l’IA et la robotique.
Objectif
Recent progress in artificial intelligence (AI) has been mostly due to machine learning and, in particular, deep artificial neural networks (ANNs). Deep learning has an increasing presence in everyday life, including critical applications such as medical diagnosis, transportation, and energy distribution. In response to this, the field of Explainable AI (XAI) has generated much effort in terms of techniques and algorithms to address this problem. However, there is still no consensus on a suite of technology to address these challenges, progress has been extremely limited, and the formal properties of such systems are under-studied.
On the other hand, computational neuroscience (CNS) aims to discover the principles behind biological neural networks that enable the brain to support cognition, perception, and action. This project will employ the latest approaches and techniques used in the field of CNS to develop the field of XAI. Specifically, the first major goal will be to employ the methods of representational geometry and neural encoding manifolds (both proven to be effective in revealing meaningful neural relationships in previous studies) to reveal how activations of collections of artificial neurons in hidden layers are associated with the decision-making process of deep networks.
Second, the same methodology will be used to reveal novel insights from a variety of existing large-scale biological datasets. Finally, we will compare and contrast the encoding strategies of neural populations found various deep learning architectures with those observed in biological networks. A better understanding of the inner-workings of biological models could directly inform researchers on how to build novel artificial models that are more accurate, robust, and even economical during both training and inference in terms of data, time, and energy consumption.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences biologiques neurobiologie
- sciences naturelles mathématiques mathématiques pures géométrie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2024-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
40003 Segovia
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.