Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chiral Non-stationary Magnonic Auto-oscillator for neuromorphic computing

Project description

Novel nano-oscillators to better mimic brain-like functions

Inspired by how the human brain processes information, neuromorphic computing is a rapidly growing field aiming to create faster and more energy-efficient systems. With the support of the Marie Skłodowska-Curie Actions programme, the CNMA project will take a step forward by developing innovative spin torque nano-oscillators called chiral non-stationary magnonic auto-oscillators. These devices will use time-modulated electric currents and special signals to mimic brain-like abilities, such as short-term memory and nonlinear responses at high gigahertz frequencies. The proposed research will focus on making these devices more efficient and faster for use in brain-inspired networks. Furthermore, it will explore how to connect multiple devices to boost their computational power.

Objective

This project aims to advance the field of neuromorphic computing by exploiting novel non-stationary dynamics in spin torque nano-oscillator, called here chiral non-stationary magnonic auto-oscillators. The core innovation lies in the numerical and experimental demonstration of time-modulated electric current (TMEC) stimulation combined with secondary stimuli to induce robust nonlinear excitations capable of sustaining neuromorphic computations. Key features such as short-term memory, echo-state properties and strong non-linear responses are achieved in the GHz frequency range, specifically targeting skyrmion and vortex textures.

The project will focus on optimising CNMA for analogue neural networks by exploring time-dependent stimulation, improving energy efficiency and computational speed. A crucial part of the research will be a close collaboration with the renowned group at the University of Kaiserslautern, where I will receive specialised training in advanced experimental techniques for magnetoresistive and spectral analysis. This will be cross validated with micromagnetic simulations, combining the expertise of the fellow and the host group. The success of the project is also guaranteed by international cooperation with renowned research centres providing samples.

Towards the end of the project, we will numerically demonstrate the scalability of the CNMA system by coupling multiple CNMAs via spin waves in a ferromagnetic strip, mimicking additional neural connections. This approach promises to significantly increase the computational power of CNMA-based reservoir computing systems. Through this partnership, fellow aim to establish a strong international research network, which will open opportunities for long-term collaborations and enhance my position within the scientific community. This extensive cooperation will also play a crucial role in securing future employment within academic institutions or R&D sectors in industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2024-PF-01

See all projects funded under this call

Coordinator

RHEINLAND-PFALZISCHE TECHNISCHE UNIVERSITAT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 202 125,12
Address
GOTTLIEB DAIMLER STRASSE
67663 KAISERSLAUTERN
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Kaiserslautern, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0