Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Photoelectrochemical CO2 Reduction Enhanced by Device Integration and Computational Techniques

Project description

Solar-to-X technologies for photoelectrochemical CO2 reduction

Efforts to reduce the negative impacts of fossil fuels have led to the development of solar-to-X technologies, which integrate energy and chemical conversions in one device. However, while promising for efficiency and decentralised use, they are complex to develop. The EIC-funded PREDICT project will clarify the mechanisms affecting the performance of photoelectrochemical (PEC) CO2 reduction devices using advanced computational materials science and multiscale modelling. By improving quantum chemistry methods for excited state calculations and integrating various scales, the project will create a transferable framework for simulating PEC devices, including artificial leaves. Expected outcomes include improved device architectures, optimised material properties, and a comprehensive modelling framework to drive the development of high-efficiency, integrated solar-to-X devices.

Objective

Motivated by the adverse environmental and societal effects of fossil resources (global warming, pollution, loss of habitat due to mining, health issues), efforts to defossilize the energy, mobility and chemical industries have sought alternatives based on, among others, solar power. Solar-to-X technologies have therefore emerged as promising, since they integrate the energy and chemical conversion steps within a single device, thereby being in principle able to reach high efficiencies, while also having the potential to be deployed in a decentralized manner. Yet, developing such technologies and designing pertinent devices is challenging due to the complex, multiscale nature of the phenomena underpinning their function. Thus motivated, PREDICT aims to elucidate fundamental mechanisms underlying the performance of photo(electro)chemical (PEC) CO2 reduction devices using advanced computational materials science and multiscale modeling techniques. By advancing quantum chemistry approaches for calculating excited state structures and dynamics, as well as bridging electronic, atomistic, mesoscopic, and macroscopic scales, this project will deliver a transferable theoretical and computational framework for the simulation of PEC devices, such as artificial leaves and beyond. The PREDICT modeling framework will be demonstrated via theoretical explorations of novel materials and processes for PEC CO2 reduction, enabling the fundamental understanding of phenomena crucial to the performance of PEC devices, and providing guidelines for optimizing the design to achieve superior performance. The framework and models will be further validated through collaborations with successful experimental projects from Area 1 of the call. Expected outcomes encompass improved device architectures, optimized materials properties, as well as a holistic and transferable multiscale modeling framework, driving the next generation of high-efficiency, integrated solar-to-X devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2024-PATHFINDERCHALLENGES-01

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 699 909,98
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0