Objective
Converting carbon dioxide, an unwanted by-product of industrial processes and combustion engines, into valuable chemical compounds is key for a cyclic carbon economy and can be achieved by the electrochemical CO2 reduction reaction (CO2RR). Despite the immense importance of this reaction in the fight against climate change, no catalyst to date meets the industrial requirements for product selectivity and catalyst stability.
Theoretical models and simulations have played a fundamental role in the understanding of these and similar catalytic processes and aided the development of more efficient catalysts for this reaction. These models, however, assume few often idealized surface structures, ignoring the fact that a variety of structures is present under working conditions that define the catalyst properties in terms of efficiency, selectivity, and stability.
With HeliECat, I will for the first time establish an approach that offers a holistic view of the catalytic processes, including side reactions and degradation mechanisms. To achieve this ambitious goal, I will combine an efficient semiempirical model for structural exploration with accurate embedded cluster models for kinetic studies. This combination shifts the focus from idealized structures to the diversity of the catalyst surface under realistic conditions. I will then model the interconversion of accessible surface structures with deep reinforcement learning techniques. The analysis of the emerging connected kinetic reaction networks will ultimately allow me to simultaneously study the catalytic activity, stability, and selectivity in silico.
I will study the CO2RR on a Cu/Au catalyst surface and demonstrate that automated kinetic modeling, considering structural diversity and realistic thermodynamic boundary conditions, is the key to a predictive simulation of catalyst behavior under actual working conditions. HeliECat will hence pave the way for realistic in silico catalyst screening.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis electrocatalysis
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft rotorcraft
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2025-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.