Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Electrostatic Discharge Protection for Emerging CMOS Technologies and RF Applications

Objective

Electrostatic Discharge (ESD) is known to be one of the main causes for failures in ULSI technologies. These failures are caused by the discharge of electrostatic charge present either on an external body, like humans or machines, or on the device itself. In order to cope with this problem, ESD protection circuits have to be provided at all input, output and power supply pins, to ensure that the discharge currents are safely conducted towards the ground.With the ever continuing scaling of CMOS technologies , the problem of ESD becomes more and more difficult to cope with. This makes the scaled down technologies more vulnerable to ESD discharges with each new technology generation. Moreover, new materials and technology modules are continuously introduced in future technologies: high k dielectrics and metal gates to replace the conventional SiO2/polySi gate stacks, copper interconnects and low k dielectrics to replace the conventional Al/oxide based interconnect schemes, and new types of devices such as FinFet s are under study to cope with the scaling problems of conventional MOSFET and apos;s. The impact of these new modules and materials on the ESD robustness of the devices is unknown and needs to be investigated.The ESD protection of RF CMOS circuits also po ses severe problems. The reason for this is that the conventional ESD protection elements cannot be used anymore due to the too high parasitics of the protection elements. As a result new devices and/or design approaches to provide ESD protection for RF-CM OS applications are urgently necessary.In this project these important reliability issues for future technologies will be studied. The impact of advanced CMOS process modules, novel SOI-based devices and advanced junctions on the ESD performance of more or less conventional ESD protection devices will be studied in great detail. New ESD protection strategies and design methodologies for RF CMOS circuits will be investigated and developed.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

INTERUNIVERSITAIR MICRO-ELEKTRONICA CENTRUM VZW
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0