Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-20

Dynamically Reconfigurable Quality Control for Manufacturing and Production Processes Using Learning Machine Vision

Objective

The main goal of DynaVis is the development of machine learning methods for embedded machine vision systems in production and manufacturing to achieve dynamically reconfigurable systems.

Inspection of products by machine vision often has to solve the problem of how to implement a human decision-making process in software. Currently, this requires a step-by-step reprogramming or parameterisation of the software, which may last for several months until satisfying results are obtained. The results of DynaVis will enable us to use Human-machine cooperation to learn complicated inspection tasks instead of set-by-step improvements and adaptations of software.

The project is foused on the development of "trainable" machine vision algorithms and of appropriate machine learning techniques. In order to create such methods we will focus on the following scientific objectives:
(1) machine learning methods for processing the complicated data produced by the vision system.
(2) methods to deal with multiple, possibly contradictory input by the operators.
(3) methods for predicting success or failure of the learning process in early stages of the training process.

The project contributes to the objectives of the call by developing a new way how reconfigurability in automated systems can be achieved. In the case of DynaVis these are embedded machine vision systems such as smart cameras. The project involves advanced control such as fuzzy methods and neural networks. The goal is to use human-machine cooperation and machine learning to dynamically adapt the vision system to the operator's decisions.

The project involves key players in the field of machine learning with a particular focus on machine vision. Companies from the machine vision industry and end-users from various fields complement the consortium. Special attention is given to the dissemination of results to SMEs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-IST-NMP-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

PROFACTOR PRODUKTIONSFORSCHUNGS GMBH
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0