Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-20

Dynamically Reconfigurable Quality Control for Manufacturing and Production Processes Using Learning Machine Vision

Ziel

The main goal of DynaVis is the development of machine learning methods for embedded machine vision systems in production and manufacturing to achieve dynamically reconfigurable systems.

Inspection of products by machine vision often has to solve the problem of how to implement a human decision-making process in software. Currently, this requires a step-by-step reprogramming or parameterisation of the software, which may last for several months until satisfying results are obtained. The results of DynaVis will enable us to use Human-machine cooperation to learn complicated inspection tasks instead of set-by-step improvements and adaptations of software.

The project is foused on the development of "trainable" machine vision algorithms and of appropriate machine learning techniques. In order to create such methods we will focus on the following scientific objectives:
(1) machine learning methods for processing the complicated data produced by the vision system.
(2) methods to deal with multiple, possibly contradictory input by the operators.
(3) methods for predicting success or failure of the learning process in early stages of the training process.

The project contributes to the objectives of the call by developing a new way how reconfigurability in automated systems can be achieved. In the case of DynaVis these are embedded machine vision systems such as smart cameras. The project involves advanced control such as fuzzy methods and neural networks. The goal is to use human-machine cooperation and machine learning to dynamically adapt the vision system to the operator's decisions.

The project involves key players in the field of machine learning with a particular focus on machine vision. Companies from the machine vision industry and end-users from various fields complement the consortium. Special attention is given to the dissemination of results to SMEs.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP6-2004-IST-NMP-2
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

STREP - Specific Targeted Research Project

Koordinator

PROFACTOR PRODUKTIONSFORSCHUNGS GMBH
EU-Beitrag
Keine Daten
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (7)

Mein Booklet 0 0