Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Size Effects in Mechanical Properties

Objective

The aim of NANOMESO is to develop knowledge in nano-micromechanics and to develop a validated computational tool to understand and predict unique plasticity phenomena experimentally observed. In nanotechnology object scales are determined by optimised fun ctionality resulting in ever shrinking sample size dimensions to the sub-micron regime and decreasing structural length scales such as grain size to the nanometer regime. The experimentally observed size dependent plasticity is not explained by existing th eories. Since the mechanism occurring span multiple time and length scales, a multiscale computational approach is required where knowledge is transferred from ab-initio across atomistics to the mesoscale (sub-micron-scale). The atomistic pathways and ener getics of the deformation mechanism in confined systems with interface dominated structures will be determined and implemented in a dislocation dynamics code allowing simulation of mechanical behaviour in a one-to-one scale with experiment. The NANOMESO consortium involves leading-edge US and EU theoreticians and modellers that have already a great expertise in the field. The full integration of two leading experimental groups in nano-micromechanics into the project (with national financial support) and t he EU-project leader having an international reputation for both computational and experimental approaches in nano-micromechanics, guarantees maximum synergies between experiment and modelling. The performance-oriented objectives are advancing the front iers of knowledge in multifunctional materials science. NANOMESO will help to overcome the initial barrier that usually prohibits or decelerates the use of novel materials/components due to a lack in theory/understanding. NANOMESO will support long-term in novation relevant to industrial applications of multifunctional metallic components such as in MEMS-devices by constructing a predictive tool, lowering investment costs for European industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-NMP-NSF-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

PAUL SCHERRER INSTITUT
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0