Skip to main content

Nanoscale Magnetization Dynamics

Objective

The aim of NOMAD is to develop frontier approaches to control the magnetodynamic properties of nanometer-sized molecular and metallic elements. The first part of the project recognizes the importance of molecular materials for future technologies based on magnetoelectronic devices. It addresses the stabilization of the magnetic moment of individual molecules beyond their intrinsic limits (slow timescale). Moreover, the construction of spin-sensitive probes with spatial atomic-resolution and a dynamic range extending up to the GHz regime is proposed. These shall be used to characterize magnetodynamic phenomena of individual molecules and metal particles in a nanoscopic environment (fast timescale). The second part relates to the control of magnetic relaxation and coercivity in nanoscale metallic particles. Electric-field manipulation of ferromagnetism has been proven in dilute magnetic semiconductors at temperatures below 50 K. Here, the aim is to demonstrate and optimize electric field-induced changes of the magnetic anisotropy energy in metal layers and nanoparticles embedded in a double tunnel junction, providing a direct or indirect (transition-driven) handle to their magnetic dynamics at room temperature. Metal-based materials constitute the mainstay of present magnetic technology; their electric-field actuation would lead to simpler and power-saving devices that process magnetic information using electrical signals.

Call for proposal

ERC-2007-StG
See other projects for this call

Host institution

FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Address
Campus De La Uab Edifici Q Icn2
08193 Bellaterra (Barcelona)
Spain
Activity type
Research Organisations
EU contribution
€ 1 517 779
Principal investigator
Pietro Gambardella (Prof.)
Administrative Contact
Stella Veciana (Dr.)

Beneficiaries (1)

FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Spain
EU contribution
€ 1 517 779
Address
Campus De La Uab Edifici Q Icn2
08193 Bellaterra (Barcelona)
Activity type
Research Organisations
Principal investigator
Pietro Gambardella (Prof.)
Administrative Contact
Stella Veciana (Dr.)