Skip to main content

Attosecond Dynamics On Interfaces and Solids

Objective

New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.

Field of science

  • /natural sciences/chemical sciences/analytical chemistry/spectroscopy
  • /natural sciences/physical sciences/electromagnetism and electronics/electrical conductivity/semiconductor
  • /natural sciences/physical sciences/electromagnetism and electronics/optoelectronics
  • /engineering and technology/environmental engineering/energy and fuels/renewable energy/solar energy
  • /natural sciences/physical sciences/condensed matter physics/solid-state physics
  • /natural sciences/computer and information sciences/data science/data processing

Call for proposal

ERC-2007-StG
See other projects for this call

Funding Scheme

ERC-SG - ERC Starting Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Address
Hofgartenstrasse 8
80539 Munich
Germany
Activity type
Other
EU contribution
€ 1 296 000
Principal investigator
Reinhard Kienberger (Dr.)
Administrative Contact
Ferenc Krausz (Prof.)

Beneficiaries (1)

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Germany
EU contribution
€ 1 296 000
Address
Hofgartenstrasse 8
80539 Munich
Activity type
Other
Principal investigator
Reinhard Kienberger (Dr.)
Administrative Contact
Ferenc Krausz (Prof.)