Skip to main content
European Commission logo print header

Mapping functional protein-RNA interactions to identify new targets for oligonucleotide-based therapy.


An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.

Call for proposal

See other projects for this call



Gower street
WC1E 6BT London
United Kingdom

See on map

London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Principal investigator
Jernej Ule (Dr.)
Administrative Contact
Malgorzata Kielbasa (Ms.)
EU contribution
No data

Beneficiaries (3)