Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Shrink-Path of Ultra-Low Power Superconducting Electronics

Project description


Next-Generation Nanoelectronics Components and Electronics Integration
The project supported joint efforts of European academic and industrial groups in the superconductive technologies field
The Support Action S-PULSE aims to prepare Superconducting Electronics (SE) for the technology generation beyond the CMOS scaling limits ("beyond CMOS"). Scaling laws in CMOS technology indicate that some concepts cannot be simply extrapolated, and new physical effects that have been negligible up to now, have to be taken into account in the future. Due to the total different physical base in SE, it never had a scaling law, and quantum limits define the ultimate speed. This provides already demonstrated logic operation speed above 100 GHz with typically power dissipation of 1 aJ per logic operation with a 1 µm feature size metal based process. The European activities in SE are currently coordinated by the non-profit Society FLUXONICS e.V. a SCENET initiative under FP6 for a dynamic technology platform in SE. As a major outcome of this network, a circuit foundry for SE was established, a cell library was made available and a first roadmap was drawn up in the field. S-PULSE supports joint efforts of European academic and industrial groups in the superconducting technologies field. The action is to strengthen the vital link between research and development on the one hand and the industrial view on the other hand, bring together industrial expectations and visionary extrapolation and current status of technology, intensify the exchange of knowledge and ideas, take charge of education, and win public interest. The overall strategy of S-PULSE is to broaden the FLUXONICS network and to promote the formation of a European Technology Platform (ETP) to develop and implement a Strategic Research Agenda in the field of ultra-low power superconducting electronics down to the nano-scale domain. With the view on the formation of an industrial guided ETP in the field of SE, the SA is expected to strengthen the competitiveness of the European nanoelectronics industry and to make SE technologies ready to compete with other technologies in the world markets.

The proposed Support Action S-PULSE aims to prepare Superconducting Electronics (SE) for the technology generation beyond the CMOS scaling limits ("beyond CMOS"). Scaling laws in CMOS technology indicate that some concepts cannot be simply extrapolated, and new physical effects that have been negligible up to now, have to be taken into account in the future. Due to the total different physical base in SE, it never had a scaling law, and quantum limits define the ultimate speed. This provides already demonstrated logic operation speed above 100 GHz with typically power dissipation of 1 aJ per logic operation with a 1 µm feature size metal based process. The European activities in SE are currently coordinated by the non-profit Society FLUXONICS e.V. a SCENET initiative under FP6 for a dynamic technology platform in SE. As a major outcome of this network, a circuit foundry for SE was established, a cell library was made available and a first roadmap was drawn up in the field. S-PULSE supports joint efforts of European academic and industrial groups in the superconducting technologies field. The action is to strengthen the vital link between research and development on the one
hand and the industrial view on the other hand, bring together industrial expectations and visionary extrapolation and current status of technology, intensify the exchange of knowledge and ideas, take charge of education, and win public interest. The overall strategy of S-PULSE is to broaden the FLUXONICS network and to promote the formation of a European Technology Platform (ETP) to develop and implement a Strategic Research Agenda in the field of ultra-low power superconducting electronics down to the nano-scale domain. With the view on the formation of an industrial guided ETP in the field of SE, the SA is expected to strengthen the competitiveness of the European nanoelectronics industry and to make SE technologies ready to compete with other technologies in the world markets.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2007-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSA - Coordination and support action

Coordinator

LEIBNIZ-INSTITUT FUER PHOTONISCHE TECHNOLOGIEN E.V.
EU contribution
€ 66 500,00
Address
Albert Einstein strasse 9
07745 Jena
Germany

See on map

Region
Thüringen Thüringen Jena, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (15)

My booklet 0 0