Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-05-27

Action Potential Dynamics in a Lipid Nanotube - A Minimal Model of the Neuron

Objective

The active propagation of electrochemical signals is widespread in biological organisms because of the need for efficient, rapid communication. Open questions about signaling remain because experiments with actual neurons are constrained by the neuron’s complex structure and intricate feedback. The goal of this project is to develop a minimal model of the neuron in which the active propagation of electrochemical signals can be readily studied. A Giant Unilamellar Vesicle (GUV) containing voltage-gated potassium channels will serve as the “soma” for this synthetic neuron. A long, membrane tube will be drawn out from this GUV to form an “axon”, and signal propagation along it studied with electrophysiology and fluorescence techniques. Predictions about the fundamental limits of biological signaling will be tested by measuring the speed and fidelity of the action potential as parameters including the diameter of the membrane tube, resting membrane potential and density of ion channels are varied. As intermediate goals, we will determine if membrane curvature induces protein sorting, and will also study how the shape and fluctuations of the GUV membrane are coupled to the activity of the ion channels. This project will contribute significantly to our understanding of active membranes and action potential dynamics. In the future, the skills and techniques learnt during the project may be applied to other complex processes such as signaling in networks, pacemaker activity and signal amplification cascades.

Call for proposal

FP7-PEOPLE-2007-4-2-IIF
See other projects for this call

Coordinator

INSTITUT CURIE
EU contribution
€ 164 777,73
Address
RUE D ULM 26
75231 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Administrative Contact
Corinne Cumin (Ms.)
Links
Total cost
No data