Skip to main content
European Commission logo print header

Action Potential Dynamics in a Lipid Nanotube - A Minimal Model of the Neuron

Ziel

The active propagation of electrochemical signals is widespread in biological organisms because of the need for efficient, rapid communication. Open questions about signaling remain because experiments with actual neurons are constrained by the neuron’s complex structure and intricate feedback. The goal of this project is to develop a minimal model of the neuron in which the active propagation of electrochemical signals can be readily studied. A Giant Unilamellar Vesicle (GUV) containing voltage-gated potassium channels will serve as the “soma” for this synthetic neuron. A long, membrane tube will be drawn out from this GUV to form an “axon”, and signal propagation along it studied with electrophysiology and fluorescence techniques. Predictions about the fundamental limits of biological signaling will be tested by measuring the speed and fidelity of the action potential as parameters including the diameter of the membrane tube, resting membrane potential and density of ion channels are varied. As intermediate goals, we will determine if membrane curvature induces protein sorting, and will also study how the shape and fluctuations of the GUV membrane are coupled to the activity of the ion channels. This project will contribute significantly to our understanding of active membranes and action potential dynamics. In the future, the skills and techniques learnt during the project may be applied to other complex processes such as signaling in networks, pacemaker activity and signal amplification cascades.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2007-4-2-IIF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

INSTITUT CURIE
EU-Beitrag
€ 164 777,73
Adresse
RUE D ULM 26
75231 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Research Organisations
Kontakt Verwaltung
Corinne Cumin (Ms.)
Links
Gesamtkosten
Keine Daten