Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Realistic dense matter physics and numerical simulations of compact star spacetimes

Objective

The ultimate goal of this project is to explore, by theoretical considerations and numerical calculations, the mysterious and presently at large unknown interiors of compact astrophysical objects. Comparison of theoretical results with observations will allow for putting constraints on the properties of extremely dense matter, which is not likely to be accomplished in Earth-based experiments in near future. This intrinsically multidisciplinary project demands to combine knowledge from various fields of physics of different scales, especially the General Theory of Relativityand the modern theory of dense matter (quantum mechanics, thermodynamics, nuclear physics, theory of super-fluidity...) astrophysics as well as applied mathematics (numerical algorithms) and advanced programming in order to use and develop numerical methods for solving multi-dimensionalcomputational problems than cannot be solved analytically. The Applicant will address, through careful research and development of state-of-the art numerical libraries, a broad range of interesting unsolved astrophysical problems, such as the state of differentially rotating compact stars, oscillation and stability of non-linear modes for rapidlyrotating stars, dynamical re-configuration of the star structure induced by the appearance of exotic phase core (so-called mini-collapse), inclusion of realistic processes (i.e. viscosity, magnetic fields), elastic and thermal properties of the crust of spinning-down pulsars as well as direct computation of resulting gravitationalwave emission in various physical settings. The Applicant plans also to allocate a part of the time to explorecompletely new numerical approach, namely wavelet methods for solvingpartial differential equations: this approach unites the locality of finite-differences methods and the accuracy and theoretical foundations of spectral methods and therefore seems ideal for realistic astrophysical simulations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-2-ERG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

CENTRUM ASTRONOMICZNE IM. MIKOLAJA KOPERNIKA POLSKIEJ AKADEMII NAUK
EU contribution
€ 45 000,00
Address
Bartycka, 18
00-716 Warszawa
Poland

See on map

Region
Makroregion województwo mazowieckie Warszawski stołeczny Miasto Warszawa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0