Skip to main content

The control of protein synthesis in health and disease

Objective

Protein synthesis is a key process in living cells, being required for cells to grow, divide, and respond to changing conditions, as well as being critical in gene expression. However, protein synthesis in an expensive process, using a great of energy and amino acids. It is therefore tightly controlled. This involves the regulation, by phosphorylation, of proteins involved in protein synthesis (‘translation factors’) and mRNA-binding proteins. My laboratory studies the roles of these proteins and the protein kinases that act upon them in regulating protein synthesis in mammalian cells. I am particularly interested in the mTOR (mammalian target of rapamycin) pathway, which is regulated by amino acids and hormones and controls several steps in protein synthesis. A major goal of this project is to achieve a more complete understanding of mTOR signalling and to establish how different signalling pathways and translation factors work together to control protein synthesis. This research will extend our knowledge of a key biological process also help optimize production of biological drugs’, a major interest in the pharmaceutical industry. My laboratory also has a strong interest in the mechanisms by which defects in the translational machinery or in its control lead to human diseases. For example, dysregulation of mTOR signalling leads to cancer and heart disease. We will explore the molecular mechanisms involved in this. Defects in a key translation factor (‘eIF2B’) cause a severe neurodegenerative disease (‘vanishing white matter’). We will employ multiple complementary approaches to understand how problems in protein synthesis lead to these diseases. This will provide valuable information for treating or managing them. Lastly, faulty control of the synthesis of proteins called cytokines leads to inflammatory disease. I will explore the mechanisms that normally control cytokine synthesis, which may lead to new opportunities for treating inflammatory diseases.

Field of science

  • /medical and health sciences/health sciences/inflammatory diseases
  • /natural sciences/chemical sciences/organic chemistry/amines
  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins
  • /medical and health sciences/clinical medicine/oncology/cancer

Call for proposal

FP7-PEOPLE-IRG-2008
See other projects for this call

Funding Scheme

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSITY OF SOUTHAMPTON
Address
Highfield
SO17 1BJ Southampton
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 100 000
Administrative Contact
Simon Mason (Mr.)