Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Characterization of membrane protein dynamics by hydrogen/deuterium exchange and time-resolved infrared spectroscopy, assisted by maximum entropy and Bayesian methods of analysis

Objective

Protein dynamics is essentially linked to protein function, aggregation, and folding. Time-resolved spectroscopy is specially suited to reveal these dynamics, counterbalancing the static pure-structural information provided by X-ray crystallographic structures. In equilibrium, protein conformation fluctuates, eventually visiting all possible higher-energy states in equilibrium with the ground state conformation. For soluble proteins the dynamics of such fluctuations have been successfully detected and characterized by hydrogen/deuterium exchange (HDX) combined with NMR spectroscopy. However, experimental limitations of NMR spectroscopy have precluded a similar level of understanding of the dynamics of membrane proteins. Proteins dynamics manifest themselves also when a fast perturbation is applied, such as when a laser pulse is applied to proteins with photocycles. Both in HDX and in perturbation experiments the time-resolved response of the system is a multi-exponential relaxation process. However, the relevant information to characterize and understand the protein dynamics is not the relaxation process itself, but the number, value, and nature (discrete/distributed) of the rate constants of the relaxation process. In this project our first goal is the improvement, development and application of maximum entropy and Bayesian methods to analyze the multi-exponential data arising in the HDX of membrane proteins, and in the photocycles of membrane proteins. Simultaneously, we will implement new experimental approaches of HDX to obtain dynamics information of membrane proteins by infrared spectroscopy, and apply them to at least three membrane protein systems: the melibiose transporter, bacteriorhodopsin, and a G-protein coupled receptor chimera. The combined success of both interdisciplinary goals should provide unique and fundamental information for a better understanding of membrane protein dynamics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IRG-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSITAT AUTONOMA DE BARCELONA
EU contribution
€ 50 000,00
Address
EDIF A CAMPUS DE LA UAB BELLATERRA CERDANYOLA V
08193 Cerdanyola Del Valles
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0