Objective
Analytical methods based on fluorescence measurements are widely employed for investigating biological process at cellular level. A modern technique is fluorescence-lifetime imaging microscopy (FLIM), where a map is obtained of the fluorescent emission lifetime versus position in a cell. The objective of project PARAFLUO is an innovative instrumentation system that will enhance and extend the usefulness of FLIM, making possible to obtain simultaneously FLIM data separately for the various spectral components of the emission. There is wide consensus among experimenters that this spectrally resolved technique (called sFLIM) will support a better understanding of the biological processes involved. Such understanding is paramount for the (patho)physiology of tissues and organisms and gives a base for gaining a better insight in key medical issues, such as the origin and growth mechanisms of tumors. The optoelectronic instrumentation developed will be useful also for other market objectives, such as simultaneous multi-spectral profiling of objects by laser detection and ranging (LADAR) techniques. The developments envisaged are essentially: (a) a photon-counting array detector based on the silicon single-photon avalanche diode (SPAD) technology; (b) a new micro-lens system for focusing light onto the detector and (c) an ASIC based multichannel time correlated single photon counting (TCSPC) system, integrated with an optoelectronic setup in a confocal microscope. The base of the PARAFLUO consortium is given by three SME’s; each one having a consolidated technical know-how and an active presence in the market over one of the quoted scientific-technical (S/T) areas. Five RTD performers have been selected primarily because of their high international standard in these areas; furthermore, each of them has experience of active collaboration with the SME directly concerned by the specific S/T work. A professional partner supports the coordinator and ensures timely and efficient exchange of materials and information in the project.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesbiological sciencesbiochemistrybiomolecules
- natural sciencesphysical sciencesopticsspectroscopyemission spectroscopy
- natural sciencesphysical sciencesopticsmicroscopyconfocal microscopy
- natural scienceschemical sciencesinorganic chemistrymetalloids
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Topic(s)
Call for proposal
FP7-SME-2008-1
See other projects for this call
Funding Scheme
BSG-SME - Research for SMEsCoordinator
39100 Bolzano
Italy