Skip to main content

Self-assembly of confined colloidal objects for the study of nano-optic phenomena


We have demonstrated the presence of attractive interactions arising in low ionic strength solution between charged soft-matter objects and highly curved regions of like-charged confining surfaces. These unexpected interactions result in stretching of DNA and trapping of colloidal particles in solution in a nanofluidic slit. This proposal seeks to further understand the attractive interactions arising between colloidal objects and like-charged confining walls in low-ionic-strength solution, in order to better control the underlying self-assembly process. The controlled self-assembly of arrays or arbitrary arrangements of discrete charged metal or dielectric nano-objects will permit the investigation of plasmonic and photonic phenomena in two dimensions, e.g. plasmonic coupling of resonantly excited metal nanoparticles, modification of fluorescence emission of single emitters diffusing in solution very close to discrete metal nano-objects, realization of novel ordered and disordered arrangements of nano-objects (e.g. dielectric particles like TiO2) for studying light scattering phenomena in two dimensions. One of the chief advantages of the self-assembly technique described here over conventional fabrication techniques is that the substrate surface structure which directs self-assembly of the optically active element acts as a “rewritable surface” enabling the investigation of the plasmonic and photonic properties of ensembles of particles of similar surface charge but variable dielectric properties.

Convocatoria de propuestas

Consulte otros proyectos de esta convocatoria


Raemistrasse 101
8092 Zuerich

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Vahid Sandoghdar (Prof.)
Aportación de la UE
€ 250 701,34