Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Small Artery Remodelling

Objective

Cardiovascular diseases are the leading cause of death and disability in the European population and represent a great burden of suffering and costs. Their complex etiology originates from different pathological stimuli and involves different cell types, resident in the vascular wall or infiltrating from the blood. The adaptation of the vasculature to physiological and pathophysiological forces depends on both the communication between its cellular components and their interaction with the extracellular matrix (ECM). When subjected to enhanced stretch, cyclic mechanical strain, or shear stress, blood vessels undergo typical transformations in wall shape that are always associated with alterations of the ECM and cellular composition, collectively described as vascular remodelling. Remodelling processes occur specifically in small arteries and arterioles, which show extreme changes in their size and function (microvascular remodelling). This is especially the case in hypertensive or diabetic patients, and contributes to a vicious cycle resulting in organ dysfunction and progression of vascular disease. A multidisciplinary approach is required to better understand vascular remodelling processes. We propose an interdisciplinary ITN to promote excellence in vascular biology, with focus on small vessels/arteries and their ECM. This will enhance the interaction between 8 academic groups and one SME in 7 European countries, specialized in physiology, signalling mechanisms, cell-cell and cell-matrix interactions in vascular endothelium and smooth muscle, as well as in drug discovery and development. The ITN will provide a specialized training ground by connecting investigations of the biology of vascular cells and their surrounding ECM in an innovative manner. It will therefore promote the careers of young investigators by specialising them in a field of vascular biology with a great potential for the future.

Call for proposal

FP7-PEOPLE-ITN-2008
See other projects for this call

Coordinator

MAX IV Laboratory, Lund University
EU contribution
€ 656 354,00
Address
Paradisgatan 5c
22100 LUND
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Per Hellstrand (Prof.)
Links
Total cost
No data

Participants (10)