Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

SMALL TO LARGE DEFORMATIONS OF UNSATURATED SOILS: AN APPLICATION TO EARTH STRUCTURES

Objective

In unsaturated soils, pores are filled partly by water and partly by air. Unsaturated soils occur naturally (as superficial ground above the water table) or in manmade structures (as compacted earth in infrastructure embankments, underground nuclear waste repositories and flood defences). Unsaturated soil mechanics has experienced significant advances during recent years, instigated by the use of compacted earth as sustainable building material and by the pressing need of the construction industry to improve techniques for management and appraisal of earth structures. Seminal contributions to unsaturated soil mechanics have been made over the past two decades but the current state-of-the-art is still unable to provide an accurate understanding of pre-failure behaviour in compacted soils, which is crucial to ensure long-term serviceability and cost-effective maintenance of earth structures. Mechanical non-linerarity and dependency of small-strain stiffness, as well as damping, on stress history are important properties not properly described by existing constitutive models. Understanding the response of compacted soils at small strains is not only central to applications in engineering dynamics, such as predicting ground motion during earthquakes or next to high-speed railways, but also to the analysis of earth structures under static loads of service. The proposed project will contribute to fill such gaps of knowledge by pursuing two intertwined lines of investigations. Firstly, it will undertake a wide-ranging programme of triaxial and resonant column tests on unsaturated clayey silt samples compacted both in the laboratory and in-situ following standard procedures to ensure comparable material fabrics. Secondly, it will formulate a constitutive model capable of describing mechanical behaviour from small to large strains and will highlight advantages and limitations of such model when reproducing the behaviour of soils compacted both in the laboratory and in-situ.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITY OF GLASGOW
EU contribution
€ 172 434,64
Address
UNIVERSITY AVENUE
G12 8QQ Glasgow
United Kingdom

See on map

Region
Scotland West Central Scotland Glasgow City
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0