Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Strong Probabilistically Checkable Proofs

Objective

Probabilistically Checkable Proofs (PCPs) encapsulate the striking idea that verification of proofs becomes nearly trivial if one is willing to use randomness. The PCP theorem, proven in the early 90's, is a cornerstone of modern computational complexity theory. It completely revises our notion of a proof, leading to an amazingly robust behavior: A PCP proof is guaranteed to have an abundance of errors if attempting to prove a falsity. This stands in sharp contrast to our classical notion of a proof whose correctness can collapse due to one wrong step. An important drive in the development of PCP theory is the revolutionary effect it had on the field of approximation. Feige et. al. [JACM, 1996] discovered that the PCP theorem is *equivalent* to the inapproximability of several classical optimization problems. Thus, PCP theory has resulted in a leap in our understanding of approximability and opened the gate to a flood of results. To date, virtually all inapproximability results are based on the PCP theorem, and while there is an impressive body of work on hardness-of-approximation, much work still lies ahead. The central goal of this proposal is to obtain stronger PCPs than currently known, leading towards optimal inapproximability results and novel notions of robustness in computation and in proofs. This study will build upon (i) new directions opened up by my novel proof of the PCP theorem [JACM, 2007]; and on (ii) state-of-the-art PCP machinery involving techniques from algebra, functional and harmonic analysis, probability, combinatorics, and coding theory. The broader impact of this study spans a better understanding of limits for approximation algorithms saving time and resources for algorithm designers; and new understanding of robustness in a variety of mathematical contexts, arising from the many connections between PCPs and stability questions in combinatorics, functional analysis, metric embeddings, probability, and more.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 1 639 584,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0