Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Sparse Structured Methods for Machine Learning

Objetivo

Machine learning is now a core part of many research domains, where the abundance of data has forced researchers to rely on automated information processing. In practice, today, machine learning techniques are applied in two stages: practitioners first build a large set of features; then, off-the-shelf algorithms are used to solve the appropriate prediction tasks, such as classification or regression. While this has led to significant advances in many domains, I believe that the potential of machine learning is far from being fulfilled. The tenet of this proposal is that to achieve the expected breakthroughs, this two-stage paradigm should be replaced by an integrated process where the specific structure of a problem is taken into account explicitly in the learning process. This will allow the consideration of massive numbers of features, in both numerically efficient and theoretically well-understood ways. I plan to attack this problem through the tools of regularization by sparsity-inducing norms. The scientific objective is thus to marry structure with sparsity: this is particularly challenging because structure may occur in various ways (discrete, continuous or mixed) and my targeted applications in computer vision and audio processing lead to large-scale convex optimization problems. My research program is expected to have a high impact on statistical machine learning research, notably by providing new solutions to the open problem of non-linear variable selection. Moreover, my general methodology will be directly applied to domains where the natural structure of data has been recognized as crucial but is still underused by learning techniques, namely computer vision (object recognition, image denoising) and audio processing (speech separation, music recognition).

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Aportación de la UE
€ 1 468 248,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0