Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Ultrafast Hyperpolarized NMR and MRI in Multiple Dimensions

Objective

Multidimensional nuclear magnetic resonance (nD NMR) plays a unique role in Science as a primary tool for the characterization of biomolecules, as part of drug-discovery processes, and in clinical imaging (MRI). Further progress in NMR is hampered by this spectroscopy s low sensitivity, arising from the weak interactions that it involves. The prospects of solving this problem by continuing with incremental bigger machines approaches are poor, given the high maturity reached by existing technologies. The present Project deals with this issue by departing from traditional concepts, and relying on two incipient but highly promising developments in the field. One of these pertains ex situ dynamic nuclear hyperpolarization, an approach capable of eliciting liquid state NMR signals that surpass those afforded by the highest-field spectrometers by factors e10,000. While capable of providing super-signals hyperpolarization has the drawback of involving irreversible changes in the physical state of the sample. This makes it incompatible with nD NMR technologies, requiring the collection of multiple scans identical to one another except for systematic delay variations. As second component in this high-risk/high-gain Project we propose merging hyperpolarization with "ultrafast" methods that we have recently developed for completing arbitrary nD NMR/MRI acquisitions within a single scan. The resulting synergy could increase sensitivity by orders of magnitude, while demanding negligibly small amounts of spectrometer/scanner time to complete nD acquisitions. This should provide an ideal starting point for the analysis of a variety of organic and structural biology problems, and provide new tools to explore in vivo metabolism focusing on cancer biomarkers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Call for proposal

ERC-2009-AdG
See other projects for this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 2 499 780,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Beneficiaries (1)