Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Properties and Applications of the Gauge/Gravity Correspondence

Objetivo

This proposal is concerned with developing and exploiting the remarkable connections between many relativistic and nonrelativistic matter systems on the one hand, and gravitating systems on the other. These connections are implied by the correspondence between gauge quantum field theory and quantum gravity (the gauge/gravity correspondence ) that is a characteristic feature of string theory, which unifies gravity and Yang-Mills gauge theory in a fundamental manner. There are several interrelated objectives: (1) Strongly coupled non-gravitational systems. The aim is to make use of the gauge/gravity equivalence to further our understanding of particularly interesting matter systems that are intrinsically strongly coupled and for which there are therefore few other calculational tools available. Systems of this type include high energy collisions of heavy ions, systems exhibiting quantum criticality, such as high temperature and heavy fermion superconductors, and quarks confined within hadrons by the strong force. (2) Strongly coupled gravitational systems. The aim here is to make use of the gauge/gravity equivalence to deduce properties of gravitational systems at high curvature, starting from weakly coupled gauge theory. The aim is to study: (a) cosmological singularities and the evolution of the early universe in the big-bang era; {b) quantum properties of black holes. (3) Developing the structure of the gauge/gravity correspondence. The projects outlined above rely on further developing the geometrical structure of string theory. The proposal focuses on two crucial aspects: (a) The exact integrability of string theory in anti de Sitter space and the corresponding Yang-Mills gauge quantum field theory, which leads to powerful exact results. (b) The detailed manner in which string theory extends Einstein's general theory of relativity at ultrashort distances, which is crucial for realizing non-perturbative symmetries.

Convocatoria de propuestas

ERC-2009-AdG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación de la UE
€ 1 475 000,00
Dirección
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Reino Unido

Ver en el mapa

Región
East of England East Anglia Cambridgeshire CC
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Renata Schaeffer (Ms.)
Investigador principal
Michael Green (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)