European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Silicon sUbstrates from an inteGrated Automated pRocess

Objetivo

Since the silicon wafer still accounts for a substantial part of the cost of solar modules, reducing the silicon consumption per watt peak is one of the most effective ways of reducing the overall cost of PV systems. In this project we propose a methodology to produce a high-efficiency solar module with a very limited amount of Si. The methodology is based on two technologies: the first one for the fabrication of the solar wafers, the second one for the processing of this new material.
For the fabrication of the ultra-thin solar wafers, a material, for instance a metallic material, with a high coefficient of thermal expansion, is deposited on the substrate at high temperature. The system is then cooled down, and the difference of thermal expansion induces some stress in the silicon substrate. When the stress exceeds the mechanical strength of silicon, a crack propagates parallel to the surface, and the top layer (which thickness reaches in this case around 50 µm) of silicon is detached from the parent substrate. The thin silicon layer and the metal layer are rolled due to some remaining stress. This stress can be annihilated by dipping the sample in a chemical bath.
The processing of this material into a solar module is not trivial and the second technology developed in this project proposes to glue the ultra-thin wafer to a definitive glass superstrate. The Si material is then processed into a solar cell, and encapsulated into a module. The module and the solar cell process are integrated and are performed at low temperature (heterojunction-based interdigitated back contact) to be compatible with the glass thermo-mechanical properties.
The project directly addresses a core issue of photovoltaic research and proposes an elegant, low-cost and very innovative solution to solve it.

Convocatoria de propuestas

FP7-ENERGY-2010-1
Consulte otros proyectos de esta convocatoria

Régimen de financiación

CP - Collaborative project (generic)

Coordinador

INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Aportación de la UE
€ 1 002 505,00
Dirección
KAPELDREEF 75
3001 Leuven
Bélgica

Ver en el mapa

Región
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo de actividad
Research Organisations
Contacto administrativo
Christine Van Houtven (Ms.)
Enlaces
Coste total
Sin datos

Participantes (10)