Skip to main content
European Commission logo print header

Enantioselective Transition Metal Catalysis for Efficient Chemical Synthesis

Objective

Organic molecules of all shapes and sizes are required for a multitude of applications in numerous settings, such as in the biomedical, pharmaceutical, and agrochemical industries (among others). To meet this demand, organic synthesis is faced with the challenge of converting simple, readily available chemical building blocks into more complex structures in as rapid, efficient, and cost-effective a manner as possible. As such, increasing the efficiency of organic synthesis provides enormous benefits to society, quality of life, and a sustainable future.

In this proposal, we outline a program aimed at the design, development, and application of new asymmetric transition metal-catalyzed reactions, where a chiral catalyst will control which particular enantiomer of a chiral product is formed. This feature is absolutely vital, since the action of chiral functional molecules within a chiral environment (such as in biological systems) is critically dependent upon their three-dimensional shape, and hence their enantiomeric composition. Several sub-project areas (each based around transition metal ions for which our group has had prior expertise) are presented, which target compounds from simpler chemical building blocks (copper- and rhodium-catalyzed reactions) to those of higher complexity (nickel-catalyzed domino reactions). During the course of this research, we anticipate that a host of useful discoveries will be made that will positively impact the discipline of organic synthesis for the ultimate benefit of society.

Call for proposal

ERC-2010-StG_20091028
See other projects for this call

Host institution

THE UNIVERSITY OF NOTTINGHAM
EU contribution
€ 849 235,25
Address
University Park
NG7 2RD Nottingham
United Kingdom

See on map

Region
East Midlands (England) Derbyshire and Nottinghamshire Nottingham
Activity type
Higher or Secondary Education Establishments
Principal investigator
Hon Wai Lam (Dr.)
Administrative Contact
Paul Cartledge (Mr.)
Links
Total cost
No data

Beneficiaries (2)