Objective
This project centers around the investigation of molecular mobility in solid layers by a truly multidisciplinary
approach: combining the expertise from crystal growth, astrophysics, and chemistry. We aim to
answer long standing questions in the context of two cross-disciplinary applications: the formation and
evolution of interstellar ices and the solid state transition from one crystal structure — polymorph —
to another. The first is important for fundamental questions dealing with the origin of life, specifically
concerning the delivery of molecules—like H2O, CO2 and organic molecules—to habitable planets.
The second application is of great interest to the pharmaceutical industry where polymorph control is
crucial. The polymorphic form controls the solubility of the compound and is therefore key in dose
determination.
The goal of the investigation is to obtain an understanding of mobility in molecular layers on the
molecular level in order to (i) understand the processes in interstellar ices leading to the meeting of two
reactive species, (ii) identify the trapping mechanisms in interstellar ices, (iii) predict which molecules can survive in ices in the harsh environment of star and planet forming regions, (iv) determine which processes are fundamental to polymorphic conversion, and (v) design a way to inhibit or promote polymorphic conversion. I propose to study the mobility in molecular layers This project centers around the investigation of molecular mobility in solid layers by a truly multidisciplinary approach: combining the expertise from crystal growth, astrophysics, and chemistry. We aim to answer long standing questions in the context of two cross-disciplinary applications: the formation and evolution of interstellar ices and the solid state transition from one crystal structure - polymorph -to another. The first is important for fundamental questions dealing with the origin of life, specifically concerning the delivery of molecules -like H2O, CO2 and organic molecules - to habitable planets. The second application is of great interest to the pharmaceutical industry where polymorph control is crucial. The polymorphic form controls the solubility of the compound and is therefore key in dose determination.
The goal of the investigation is to obtain an understanding of mobility in molecular layers on the molecular level in order to (i) understand the processes in interstellar ices leading to the meeting of two reactive species, (ii) identify the trapping mechanisms in interstellar ices, (iii) predict which molecules can survive in ices in the harsh environment of star and planet forming regions, (iv) determine which processes are fundamental to polymorphic conversion, and (v) design a way to inhibit or promote polymorphic conversion. I propose to study the mobility in molecular layers using a combination of simulation techniques. The fundamental difficulty is to cover processes that take place over a large range of timescales: from picoseconds to years. Advances in numerical simulations have only recently made this research possible. Using Molecular Dynamics and Monte Carlo simulations we will study the interactions and processes in molecular layers on different lengthscales and covering a timescale range of roughly 20 orders of magnitude.
This ambitious research project will be carried out in the Institute for Molecules and Materials at the Radboud University in Nijmegen, but will also benefit from existing and new collaborations with local, national and international colleagues.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy astrophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2010-StG_20091028
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.