Objective
In all living cells, the important task of protein synthesis is carried out by the ribosome. A substantial amount of cellular energy and resources is utilized to manufacture ribosomal subunits. In contrast to prokaryotes, eukaryotic ribosome assembly requires a multitude of conserved non-ribosomal trans-acting factors, which transiently associate with pre-ribosomal particles at distinct assembly stages and perform specific maturation steps.
Large-scale proteomic approaches in budding yeast, have rapidly expanded the inventory of trans-acting factors (~200). However, little is known regarding their precise site(s) of action and the role(s) of these factors during pre-ribosome assembly. Upon accomplishing their task, majority of the trans-acting factors, are typically released from maturing pre-ribosomes already in the nucleolus/nucleus. Strikingly, a handful of factors remain associated with pre-ribosomes and facilitate their export into the cytoplasm. Release of these factors constitutes “late cytoplasmic maturation events” which render exported pre-ribosomes translation competent. In this proposal we will exploit the powerful model organism budding yeast to:
(1) Develop novel biochemical tools to elucidate the molecular environment of trans-acting factors on the surface of pre-ribosomal particles. These analyses will provide us a low-resolution biochemical map of a maturing pre-ribosome.
(2) Exploit the powerful combination of genetic and high-throughput visual screening approaches in budding yeast to unravel novel “late cytoplasmic maturation steps” in the 60S biogenesis pathway.
Together, my research proposal aims to contribute significantly to our current knowledge regarding the construction and nuclear export of eukaryotic pre-ribosomes. Our analysis will lead us to general principles that underlie the dynamic assembly/dissassembly of large macromolecular ribonucleo-protein complexes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2010-StG_20091118
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.