European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

Nanoengineered Nanoparticles and Quantum Dots for Sensor and Machinery Applications

Objetivo

"Chemically modified metallic nanoparticles (NPs) or semiconductor quantum dots (QDs) are central components for the future development of nanotechnology and nanobiotechnology. This program aims to introduce new dimensions into the field of nanotechnology and nanobiotechnology by synthesizing, characterizing and assembling molecule- or biomolecule-modified nanoparticles (NPs)/Quantum dots (QDs) hybrid nanostructures that perform tailored and programmable functionalities. The project will include two complementary research activities. One direction will include the generation of electropolymerized ligand-functionalized Au NPs matrices on electrode surfaces. By tethering of appropriate ligands to the NPs, imprinted matrices for selective sensing, and signal-triggered NPs ""sponges"" for the selective uptake and release of substrates will be designed. Also, electrochemically induced pH changes by the NPs matrices will be used to control chemical reactivity (e.g. sol-gel transitions, activation of the ATP synthase machinery). The second research direction will implement ligand-modified QDs for the sensing of ions or molecular substrates. Similarly, nucleic acid-functionalized QDs will be used to develop new versatile sensing platforms exhibiting multiplexed analysis capabilities. One platform will include the quenching of the QDs by G-quadruplexes, whereas the second platform will use biochemiluminescence resonance energy transfer (BRET) as readout signal. Also, QDs-modified supramolecular DNA nanostructures will be designed to perform programmed machinery functions such as ""bi-pedal walker"", ""seesaw"", ""gear"" or ""tweezers"", and the machinery functions will be transduced by the optical properties of the QDs. Finally, DNA-machines that trigger the isothermal amplified replication of the analyzed nucleic acid will be designed, and QDs tethered to the machine will optically transduce the replication process at real-time."

Convocatoria de propuestas

ERC-2010-AdG_20100224
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

THE HEBREW UNIVERSITY OF JERUSALEM
Aportación de la UE
€ 2 167 400,00
Dirección
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Itamar Willner (Prof.)
Contacto administrativo
Hani Ben-Yehuda (Mr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)