Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development of nano-spheres and quantum dots for electrochemiluminescent (ECL) biomedical diagnostic sensor technologies

Objective

This programme addresses how single molecules such as quantum dots or metal centres within nano-structured polyelectrolytes can be used to create efficient electrochemiluminescent (ECL) sensors multi-analyte detection, specifically for biomedical sensors with ultra-high sensitivities and selectivity’s. The unique capabilities of these novel nano-materials will arise from the coupling of photonic, chemical, optical and fouling resistant properties of each component to create a sensitive and selective detection system while allowing for applications in point of care devices.
A combination of spectroscopic and electrochemical techniques will be utilised to elucidate the electron and/or energy transfer mechanisms, which will allow optimisation of device performance to be performed. The spectroscopic and electrochemical techniques highlight the redox reactions influencing the ECL production. Tailoring of surface properties and modification of polyelectrolytes will involve the use of several analytical techniques, including atomic force microscopy and electrochemical quartz crystal microbalance analysis. These studies focus on the binding of the polyelectrolyte, which will impart desirable surface chemistries at the material-solution interface to optimise the fouling resistant properties while retaining the sensitivity and selectivity of its ECL production for applications in imaging technologies.
These materials will feed into product development which will incorporate sensor design, novel detection platforms and easy to use devices. The development of novel 2nd and 3rd generation materials will focus on the detection of cardiac Troponin I (TNI). The properties of these materials will uniquely enable the development of advanced diagnostic devices based on the luminescent detection of TNI at sufficiently low concentrations so as to change clinical practice.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSITY OF STRATHCLYDE
EU contribution
€ 100 000,00
Address
Richmond Street 16
G1 1XQ Glasgow
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0