Objective
Cellular organelles are continuously remodelled by numerous cytosolic proteins that associate transiently with their lipid membrane. Some distort the bilayer, others change its composition, extract lipids or bridge membranes at distance. Previous works from my laboratory have underlined the importance of membrane sensors, i.e. elements within proteins that help to organize membrane-remodelling events by sensing the physical and chemical state of the underlying membrane. A membrane sensor is not necessarily of well-folded domain that interacts with a specific lipid polar head: some intrinsically unfolded motifs harboring deceptively simple sequences can display remarkable membrane adhesive properties. Among these are some amphipathic helices: the ALPS motif with a polar face made mostly by small uncharged polar residues, the Spo20 helix with several histidines in its polar face and, like a mirror image of the ALPS motif, the alpha-synuclein helix with very small hydrophobic residues. Using biochemistry and molecular dynamics, we will compare the membrane binding properties of these sequences (effect of curvature, charge, lipid unsaturation); using bioinformatics we will look for new motifs, using cell biology we will assess the adaptation of these motifs to the physical and chemical features of organelle membranes. Concurrently, we will use reconstitution approaches on artificial membranes to dissect how membrane sensors contribute to the organization of vesicle tethering by golgins and sterol transport by ORP proteins. We surmise that the combination of a molecular ¿switch¿, a small G protein of the Arf family, and of membrane sensors permit to organize these complex reactions in time and in space.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural sciencesbiological sciencescell biology
- natural sciencesbiological sciencesbiochemistrybiomoleculeslipids
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
Call for proposal
ERC-2010-AdG_20100317
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
75794 Paris
France