Objective Recently it has become generally accepted that a root cause of the divergently slow dynamics of glassy liquids is the tendency of the molecules to become stuck in metastable configurations (states). This effect leads to an increasing separation of time scales between local vibrational motion and larger scale molecular reconfiguration. We will use state-of-the-art geometry optimisation techniques along with large scale molecular dynamics simulations to explore the energy landscape that supports these metastable states, focusing in particular on the escape mechanism from such traps. We will frame our investigation around the use of a reaction coordinate which measures proximity to a given metastable state. The order parameter will be realized in several ways: as the liquid's structural overlap with a metastable molecular configuration, and as the size of a mobile droplet in an environment of immobile molecules taken from a given metastable configuration. We will test whether these reaction coordinates are meaningful order parameters. We will further examine how the static energy landscape and the dynamics are dependent on the reaction coordinate, and how changes in the former are realized in the latter. Our results will be a stringent test for many contemporary theories of the glass transition by scrutinising the concept of a metastable state, by characterising escape mechanisms, and by demonstrating how these paths define the organisation of the underlying energy landscape. Our use of appropriately derived order parameters will greatly reduce the relevant phase space that needs to be considered, and will be combined with cutting edge methodology for constructing equilibrium densities of states and for rare event dynamics to examine the thermodynamic and dynamic properties at low temperatures. This approach should produce definitive and unambiguous results that should greatly strengthen the foundations of our understanding of glassy dynamics. Fields of science engineering and technologymaterials engineeringnatural sciencesmathematicspure mathematicsgeometry Programme(s) FP7-PEOPLE - Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) FP7-PEOPLE-2010-IEF - Marie-Curie Action: "Intra-European fellowships for career development" Call for proposal FP7-PEOPLE-2010-IEF See other projects for this call Funding Scheme MC-IEF - Intra-European Fellowships (IEF) Coordinator THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE Address Trinity lane the old schools CB2 1TN Cambridge United Kingdom See on map Region East of England East Anglia Cambridgeshire CC Activity type Higher or Secondary Education Establishments Administrative Contact Renata Schaeffer (Ms.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data