Objective
Recently it has become generally accepted that a root cause of the divergently slow dynamics of glassy liquids is the tendency of the molecules to become stuck in metastable configurations (states). This effect leads to an increasing separation of time scales between local vibrational motion and larger scale molecular reconfiguration. We will use state-of-the-art geometry optimisation techniques along with large scale molecular dynamics simulations to explore the energy landscape that supports these metastable states, focusing in particular on the escape mechanism from such traps. We will frame our investigation around the use of a reaction coordinate which measures proximity to a given metastable state. The order parameter will be realized in several ways: as the liquid's structural overlap with a metastable molecular configuration, and as the size of a mobile droplet in an environment of immobile molecules taken from a given metastable configuration. We will test whether these reaction coordinates are meaningful order parameters. We will further examine how the static energy landscape and the dynamics are dependent on the reaction coordinate, and how changes in the former are realized in the latter. Our results will be a stringent test for many contemporary theories of the glass transition by scrutinising the concept of a metastable state, by characterising escape mechanisms, and by demonstrating how these paths define the organisation of the underlying energy landscape. Our use of appropriately derived order parameters will greatly reduce the relevant phase space that needs to be considered, and will be combined with cutting edge methodology for constructing equilibrium densities of states and for rare event dynamics to examine the thermodynamic and dynamic properties at low temperatures. This approach should produce definitive and unambiguous results that should greatly strengthen the foundations of our understanding of glassy dynamics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering amorphous solids
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2010-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.