Skip to main content

Visualizing Molecular Structural Dynamics


Here, I seek funding to study the conformational dynamics of lipid bilayer fusion and electronic excitations in organic electronics, i.e. organic photovoltaic materials. I plan to use time-resolved wide angle X-ray scattering (WAXS) for these experiments, which I have developed funded by an Intra-European fellowship.

Direct observation of structural dynamics will have enormous impact in many natural sciences. Here I will demonstrate this using two examples.

(1) Fusion of cell membranes is central to life. It is important for endocytosis, viral infection, and its malfunction causes widespread diseases, such as Alzheimer or obesity. Despite its importance, the molecular mechanism of cell membrane fusion remains unproven. Time-resolved WAXS, as developed by myself, opens a unique experimental window to visualize the structural dynamics of the process. If successful, these experiments will significantly contribute to the understanding of the lipid bilayer fusion mechanism.

(2) Semiconducting polymers are currently actively investigated due to their potential use in electronic devices,. Using time-resolved WAXS, I propose to study the structural relaxation that key-polymers undergo when electronically excited. The study will shine new light onto the long-standing photophysical question about the nature and degree of structural relaxation of a molecular backbone when exposed to light. I also seek to visualize the structural relaxations in organic photovoltaic materials, which are thought to be performance limiting.

Combining my research experience prior and during the Intra-European fellowship, all experiments target fundamentally important scientific questions and each project will open a new experimental window to study molecular structural dynamics

Call for proposal

See other projects for this call


405 30 Goeteborg

See on map

Activity type
Higher or Secondary Education Establishments
Administrative Contact
Annika Bergman (Dr.)
EU contribution
€ 45 000