Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Microbially enhanced geologic carbon capture, trapping and storage (CO2TRAP)

Objective

Geologic sequestration of carbon dioxide, also known as carbon capture and storage (CCS), is one strategy to reduce the emission of greenhouse gases generated through the combustion of fossil fuels. Geologic sequestration of CO2 involves the injection of supercritical CO2 into underground brine formations such as oil bearing formations, deep un-mineable coal seams, and deep saline aquifers.
Sites where CO2 is stored could be closed and responsibility transferred with lower risk, higher confidence, thus greater insurability, if technologies existed that: i) would hasten the rate of CO2 trapping so long term stability could be reached in decades rather than centuries and ii) if rock formations could be sealed near wells, to prevent leakage through degraded steel and concrete in the closed injection well.
Previous work by the fellow (Mitchell et al., 2008, 2009, 2010) has demonstrated such technology – via carbonate mineral forming bacteria and biofilms in the subsurface. Here, we have shown that carbonate mineral forming microorganisms and biofilms can enhance CCS via solubility-trapping, mineral-trapping, and CO2(g) leakage reduction. Such work has however, been performed under low pressure conditions for a simple brine composition.
The CO2TRAP project aims to develop this green-technology further to address these knowledge gaps. We will;
(i) Investigate the effectof brine composition on the biomineralization process
(ii) Determine the effect of pressure on the biomineralization process
(iii) Determine the stability of carbonate minerals to SC-CO2 / brine mixtures under reservoir conditions
These data will enhance the EU’s ability to develop energy efficient, low carbon water and air treatment technologies through the 21st century for a long term environmentally sustainable future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

ABERYSTWYTH UNIVERSITY
EU contribution
€ 45 000,00
Address
VISUALISATION CENTRE PENGLAIS
SY23 3BF Aberystwyth
United Kingdom

See on map

Region
Wales West Wales and The Valleys South West Wales
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0