Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

DEVELOPMENT OF TWO COMPLEMENTARY SYSTEMS FOR THE STUDY OF RECOMBINATION AND PACKAGING OF HEPATITIS C VIRUS GENOMIC RNA USING FLUORESCENT PROTEINS AND LIVE IMAGING

Objective

The Hepathitis C Virus (HCV) infects more than 150 million people worldwide and is the major cause of hepatic cirrhosis and hepatocellular carcinoma. Current available treatment options have limited efficacy and result in effective viral suppression only in about 50% of treated patients. In addition, HCV exhibits an extremely high genetic variability, mainly due to lack of proofreading activity of the viral RNA polymerase and its ability to generate recombinant genomes. Genetic diversity allows the virus to evolve variants capable to escape immune response and drug pressure and hampers the development of effective vaccines. Research of novel specific drugs is hindered by our limited understanding of several key steps of the viral life cycle.
To clarify different aspects of HCV RNA biology, we propose the development of two new assays based on detection of fluorescent proteins. Our first objective is to use the reconstitution of a GFP protein to measure native recombination capability of HCV under different infection conditions. This part will clarify the relative importance of several factors in the generation on new recombinant forms. Subsequently, we will deploy a system to visualize genomic RNA and viral Core protein simultaneously in live cells. By fusing different fluorophores to RNA-binding proteins and to the Core, we will be able to measure packaging and copackaging efficiencies of HCV. Lastly, we will trace the pathway of RNA molecules and Core using live imaging. This will help identifying the sites of recombination, dimerization and packaging in the cell.
Taken together, the data produced will help clarify several important aspects of the viral replication cycle, and identify possible new targets for antiviral intervention. Moreover, the systems proposed represent novel approaches to the study of RNA biology in HCV, providing the Copenhagen Hepatitis C Program with advanced and competitive know-how in the field of HCV research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

REGION HOVEDSTADEN
EU contribution
€ 100 000,00
Address
KONGENS VAENGE 2
3400 Hillerod
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0