Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

New tools for nanoscale optical spectroscopy -<br/>Functional imaging of single nanostructures using antennas

Objective

Optical microscopy forms the basis of most of the natural sciences. Besides the direct visualization of objects hidden to the unaided human eye, optical spectroscopy – or in other words “colour vision”- is of prime importance providing information on electronic and vibronic properties. In addition, experiments using ultrafast laser pulses provide the highest possible temporal resolution enabling real-time observations of photo-induced processes. Conventional microscopy, however, suffers from diffraction resulting in limited spatial resolution of about 300 nm and low signal levels.

The aim of this proposal is to develop novel spectroscopic tools with sub-diffraction resolution. Our approach is based on the localization and enhancement of light-matter interactions using optical antennas. We have shown that antenna-enhanced microscopy provides 10 nm resolution combined with enormous signal amplification and now envision new techniques that extend existing schemes into the femtosecond time-domain with further improved image contrast.
Semiconductor nanowires and carbon nanotubes possess unique properties crucial to many areas of technology including communications, alternative energy and the biological sciences. At present, there is a significant lack of understanding regarding the physics of these materials. For example, the correlation between local atomic structure and the resulting optical and functional properties.

We will first address fundamental scientific questions arising from highly localized optical probing and explore new phenomena including antenna-enhanced single photon emission and energy transfer. Using our newly developed tools, we will study functional properties of single nanostructures and demonstrate antenna-enhanced light-detection and generation.

In summary, our work will lead to fundamentally new optical tools providing unprecedented insights into nanostructures and will substantially advance our understanding of light-matter interactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
EU contribution
€ 1 488 077,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0