Skip to main content

Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

Objective

"The search for planets outside of the solar system, related to the question ""are we alone in the universe?"", is undoubtedly one of the main science drivers for the current design of telescopes and astronomical instrumentation. In this FP7 project, we will study the birth-places of such exo-planets, the so-called protoplanetary discs, by combining multi-wavelength space data (HERSCHEL, XMM, HST, SPITZER) with ground-based continuum and line data (VLT, JCMT, APEX, ALMA, eMERLIN). Large amounts of survey data exist, but are seriously under-utilised. We will mainly use our FP7 resources for the manpower to collect, analyse and interpret these data by means of novel high-quality disc models. Besides archival data, our team has access to the latest results from ongoing observational key programmes (from X-ray to cm wavelength), and these data need to be folded in to probe the conditions for planet formation, such as density, temperature and chemical composition, over the discs' full radial extent. Our team also covers the required modelling know-how to reach an unprecedented level of completeness concerning the inclusion of important physical processes (astrochemistry, gas heating & cooling, dust evolution, continuum & line radiative transfer, non-LTE modelling). We also aim for a breakthrough in wavelength-coverage and completeness as to how the models are compared to observations (photometry, interferometry, line fluxes, line profiles and images). Based on these multi-wavelength data sets and our detailed modelling efforts, we will be able to determine the physical and chemical structure of the discs, and answer a number of fundamental questions related to planet formation, for example, how the gas and dust in discs evolve in time, how important the stellar UV and X-ray irradiation is, and how the presence of planets alters the disc structure. We will capitalise on our unique team expertise in observations & modelling to make the best use of existing European space-mission data to explore disc evolution and the initial conditions of planet formation."

Field of science

  • /natural sciences/physical sciences/astronomy/planetary science/planets
  • /natural sciences/physical sciences/astronomy/astrochemistry

Call for proposal

FP7-SPACE-2011-1
See other projects for this call

Funding Scheme

CP-FP - Small or medium-scale focused research project

Coordinator

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Address
North Street 66 College Gate
KY16 9AJ St Andrews
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 791 843
Administrative Contact
Trish Starrs (Ms.)

Participants (5)

UNIVERSITE JOSEPH FOURIER GRENOBLE 1

Participation ended

France
Address
Avenue Centrale, Domaine Universitaire 621
38041 Grenoble
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Sophie Beaubron (Ms.)
UNIVERSITAT WIEN
Austria
EU contribution
€ 348 385
Address
Universitatsring 1
1010 Wien
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Helmut Schaschl (Mr.)
UGA-Université Grenoble Alpes
France
EU contribution
€ 247 860
Address
621, Avenue Centrale
38401 Saint Martin D'heres
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Aurélie Diringer-Dagorne (Ms.)
RIJKSUNIVERSITEIT GRONINGEN
Netherlands
EU contribution
€ 324 058
Address
Broerstraat 5
9712CP Groningen
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Jan Poutsma (Mr.)
UNIVERSITEIT VAN AMSTERDAM
Netherlands
EU contribution
€ 281 476
Address
Spui 21
1012WX Amsterdam
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Jan Dijkers (Mr.)